Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics

نویسنده

  • Tomasz Plewa
چکیده

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1−0.25M⊙ of silicon group elements, 0.9−1.2M⊙ of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ≈ 1.2− 1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ≈ 1.3− 1.5× 10 erg. Subject headings: hydrodynamics — nuclear reactions, nucleosynthesis, abundances — supernovae: general

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detonating Failed Deflagration Model of Thermonuclear Supernovae Ii. Comparison to Observations

We develop and demonstrate the methodology of testing multi-dimensional supernova models against observations by studying the properties of one example of the detonation from failed deflagration (DFD) explosion model of thermonuclear supernovae. Using time-dependent multi-dimensional radiative transfer calculations, we generate the synthetic broadband optical light curves, near-infrared light c...

متن کامل

Thermonuclear supernovae: simulations of the deflagration stage and their implications.

Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear def...

متن کامل

Deflagrations and detonations in thermonuclear supernovae.

We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate...

متن کامل

8 Thermonuclear Supernovae

The application of Type Ia supernovae (SNe Ia) as distance indicators in cosmology calls for a sound understanding of these objects. Recent years have seen a brisk development of astrophysical models which explain SNe Ia as thermonuclear explosions of white dwarf stars. While the evolution of the progenitor is still uncertain, the explosion mechanism certainly involves the propagation of a ther...

متن کامل

Three-Dimensional Delayed-Detonation Model of Type Ia Supernova

We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006